The quality of erosion and deposition volume estimates from remotely-sensed digital elevation models of large gravelbed rivers

Richard Westaway

University of Cambridge, United Kingdom

Stuart Lane

Murray Hicks

University of Leeds, United Kingdom

National Institute of Water & Atmospheric Research, New Zealand

Acknowledgements:

- NERC (UK) & FRST (New Zealand) for funding
- NIWA (particularly Maurice Duncan, Ian Halstead & Jeremy Walsh)
- Environment Canterbury (formerly Canterbury Regional Council)
- Air Logistics (NZ) & Precision Aerial Surveys for aerial photography
- AAM Geodan for ALS survey

Remote sensing = New views of landforms

- Remote sensing technologies allow synoptic measurement of large areas
- For large gravel riverbeds, this potentially represents a huge increase in morphological information (compared to conventional x-section surveys)
- Has led to possibility of "morphological method" of inferring bed load transport rate from measurements of topographic change
- However....is the topographic data produced using remote sensing methods of sufficient quality?

Aim

 To test quality of morphological change data acquired using two remote sensing methods for two large gravel-bed rivers:

River	Digital photogrammetry	Airborne laser scanning
North Ashburton	May 95; Feb 99	n/a
Waimakariri	Feb 99; Mar 99; Feb 00	May 00

 Submerged topography recovered using through-water photogrammetry (North Ashburton, see Westaway et al., 2000 in ESP&L) or image analysis (Waimakariri, see Westaway et al., forthcoming in IJRS)

The North Ashburton River

The Waimakariri River

Results

 1 m spaced digital elevation models (DEMs) North Ashburton River 100 x 300 m study reach => 30000 points 2 riverbed DEMs • 1 DEM of difference (May 95 to Feb 99) – Waimakariri River • 1000 x 3000 m study reach => 3000000 points 4 riverbed DEMs • 3 DEMs of difference: - Flood-scale (Feb 99 to Mar 99; Feb 00 to May 00) – Annual-scale (Feb 99 to Feb 00)

Final DEMs: North Ashburton

Final DEMs: Waimakariri

Difference DEMs

North Ashburton - May 95 to Feb 99

Waimakariri - Feb 99 to Mar 99

Waimakariri - Feb 99 to Feb 00

Waimakariri - Feb 00 to May 00

Errors?

But just how confident can we be in the quality of these DEMs of difference?
Requires recognition of different types of errors in DEM surfaces

Types of error (1) RANDOM ERROR – Inherent in all measurements Cause variation from true value Revealed and minimised by repeated measurements - Called DEM precision

Types of error (2)

SYSTEMATIC ERROR
Consistent across DEM
Not revealed or minimised by repeated measurements
Called DEM accuracy

Types of error (3) GROSS ERROR – 'Blunders' – Revealed but not

Revealed but not minimised by repeated measurements
Called DEM reliability

Error in DEMs of difference

• For DEMs of difference:

- Gross errors can be identified (as outliers) and removed
- Systematic errors can be identified and removed if calibration data is available (e.g. areas of known/no change)
- Random errors cannot be removed, and limit the morphological change that can be detected ("Minimum level of detection", Brasington et al., 2000)

• Are these errors present in the DEMs of difference?

1. Gross errors

 Indicated by outliers on histograms of elevation change

Frequency distribution plots

North Ashburton 05/95-02/99

Waimakariri 02/99-02/00

Waimakariri 02/00-05/00

2. Systematic errors

 Geomorphological assumptions can be used to inform assessment of systematic errors in DEM of difference: - Dry \rightarrow wet areas show erosion but no deposition -Wet \rightarrow dry areas show deposition but no erosion Bar-top areas show little change in elevation Large deviations from these assumptions indicate presence of systematic error

Systematic error assessment 3. Bar-top areas - No change (Waimak only)

N Ashburton $05/95 \rightarrow 02/99$

Waimakariri 02/99→03/99

Waimakariri 02/99→02/00

Waimakariri 02/00→05/00

3. Random errors

 Cannot be removed from DEM of difference Limits morphological change that can be deemed significant (over random noise) • For u = a - b, minimum level of detection (LOD_{min}) is: $LOD_{min} = \sqrt{(p_a^2 + p_b^2)}$ (where *p* is a measure of DEM precision)

 \Rightarrow DEM precision measurement is critical

DEM precision

 Three measures of DEM precision are commonly used: - Theoretical precision for DP, p = photo scale x scanning resolution • for ALS, p = c. 1 cm per 1000 m flying height - Photo control point (PCP) precision (DP only) Standard deviation of photo-block vs PCP elevations Check point precision

Standard deviation of DEM vs check point elevations

Estimated DEM precision (m)

Check point precision Theoretical PCP DEM precision precision Wet Dry ± 0.071 ± 0.075 N Ashburton - May 95 ± 0.116 ± 0.238 N Ashburton - Feb 99 n/a ± 0.032 ± 0.038 \pm 0.168 Waimakariri - Feb 99 ± 0.070 ± 0.052 ± 0.262 ± 0.336 Waimakariri - Mar 99 ± 0.070 ± 0.274 ± 0.280 ± 0.051 Waimakariri - Feb 00 ± 0.049 ± 0.056 ± 0.137 ± 0.239 Waimakariri - May 00 ± *c*.0.05 n/a ± 0.105 ± 0.217

\Rightarrow DEM of difference LOD_{min} (m)

Theoretical PCP LOD Check point LOD **DEM of difference** LOD Dry-Dry Wet-Wet N Ashb 05/95→02/99 \pm 0.084 ± 0.078 $\pm 0.164^{*} \pm 0.291$ Waimak 02/99→03/99 ± 0.099 ± 0.073 $\pm 0.379 \pm 0.437$ Waimak 02/99→02/00 ± 0.090 ± 0.071 $\pm 0.296 \pm 0.412$ ± 0.075 ± 0.323 Waimak 02/00→05/00 n/a ± 0.173

* Assuming dry check point precision of 0.116 for both DEMs

Effect on calculated volumes of erosion and deposition

What is optimum LOD_{min}?

 Estimated by reversing the method, and calculating information loss for a range of arbitrary LODs

Information loss plots

Quality of DEMs of difference

- Gross errors
 - Based on outliers, appear small and identifiable
 - No real effect on DEM of difference quality
- Systematic error
 - Based on geomorphological assumptions, appear negligible
 - Most significant in areas of little change
- Random errors
 - Based on minimum level of detection calculations, potentially large effect on morphological change detected
 - LOD_{min} of ~0.2 m recovers 80-90% of morphological change
- Overall, we can be relatively confident about quality

Conclusions

- This paper has examined the quality of 4 DEMs of difference based on identifying different types of potential error
- From this, remote sensing methods DO appear to offer data quality sufficient to estimate morphological change in gravel-bed riverbeds

Conclusions (2)

- However, survey planning and execution is critical:
 - e.g. importance of image scale for photogrammetric survey:
 - Waimak 02/99 & 03/99 surveys used 1:5000 scale photography
 - dry check point precision of ~ 0.25 m
 - ~50% of morphological change detected deemed significant
 - Waimak 02/00 survey used 1:4000 scale photography
 - dry check point precision of ~ 0.15 m
 - ~75% morphological change significant
 - N Ashburton surveys used 1:3000 photography
 - dry check point precision of ~ 0.10 m
 - $\sim 85\%$ morphological change significant

(Recommended LOD_{min} of \sim 0.2 m given by DEM precision of \sim 0.15 m)

- Also better parameterisation of 'precision' is needed:
 - Theoretical and PCP precision values probably too low
 - Check point precision values probably too high