The evolving anatomy of a gravel-bed river

Richard Westaway (University of Cambridge, United Kingdom) Stuart Lane (University of Leeds, United Kingdom) Murray Hicks (National Institute of Water & Atmospheric Research, New Zealand)

Acknowledgements:

NERC (UK) & FRST (New Zealand) for funding

• NIWA (particularly Maurice Duncan, Ian Halstead & Jeremy Walsh)

• Environment Canterbury (formerly Canterbury Regional Council)

• Air Logistics (NZ) & Precision Aerial Surveys for aerial photography

AAM Geodan for ALS survey

Remote sensing = New views of landforms

- Remote sensing technologies allow synoptic measurement of large areas
- For large gravel riverbeds, this potentially represents a huge increase in morphological information (compared to 'conventional' x-section surveys)
- Gravel riverbeds offer important test of remote sensing methods due to large spatial extent with small vertical relief
- This paper shows some of the key findings from a remote sensing monitoring programme of a large gravel-bed river

The Waimakariri River

Method

(1) Digital Photogrammetry:
•3 surveys (Feb 99, Mar 99 & Feb 00)
•16 / 22 photos at 1:5000 / 1:4000
•ERDAS Imagine OrthoMAX
•Ground point spacing = 1m

(2) Airborne laser scanning:
1 survey (May 00); 3 passes
Processed inhouse by AAM Geodan
Ground point spacing = 1m

(a) Dry point elevations

(+ water edge elevations \Rightarrow estimated water surface elevations)

(3) Image Analysis:
Empirical relationship derived using PCI
Depth = f(ln[water colour]) (Lyzenga, 1981; Winterbottom & Gilvear, 1998)
Ground point spacing = 1m
Estimated water depth subtracted from estimated water surface map

(b) Wet point elevations

Photogrammetry / ALS

Image analysis

Interpolation across wetted channels

Subtracted from

Merged to give...

Results

 4 riverbed digital elevation models (DEMs): - 3300 x 1300 m study reach – Ground spacing of 1m - Almost 3000000 point elevations!! • 3 difference DEMs: - Flood-scale (Feb 99 to Mar 99; Feb 00 to May 00) - Annual-scale (Feb 99 to Feb 00)

DEM quality

- Assessed in terms of accuracy (mean error, ME) and precision (standard deviation of error, SDE) - after Cooper (1998)
- Estimated by comparing DEM elevations with check data

Survey	Method	ME (m) SDE (m)		ME (m) SDE (m	
Feb 99	1:5000 photogrammetry	+0.084	0.261	+0.260	0.318
Mar 99	1:5000 photogrammetry	+0.010	0.261	+0.168	0.264
Feb 00	1:4000 photogrammetry	+0.088	0.131	+0.101	0.219
May 00	ALS survey	-0.019	0.100	+0.037	0.250

Dry areas

Wet areas

Final DEM surfaces

May 2000

Reach-scale morphology: Feb 1999 and Mar 1999

Reach-scale morphology: Feb 2000 and May 2000

Cross-section

Braid-belt

- Complex braided form
 Meandering pattern
 Concentration of flow
 Remains actively
 - braided at low flows
- Activity ≠ elevation
- Very dynamic, even at flood time-scale

Low relief bars

 Higher mean elevation than braid-belt Alternating(?) • Dendritic drainage Relatively stable over time (\Rightarrow vegetation) However, evidence of upstream migration and dissection

Difference DEMs

Patterns of change

Bank erosion Avulsion In-channel fill Bar-top change? After

3D visualisation: Braid-belt

Problems: (a) Methodological

- Surface quality:
 - DEM accuracy systematic error, especially in wetted channels
 - DEM precision higher than expected; linked to low matching success in areas of low surface texture
- Propagation of errors in derived parameters:
 - Mean bed level
 - Slope
 - Morphological scaling
 - Patterns/volumes of morphological change
- Allows identification of pattern and/or process rate, but <u>not</u> identification of process mechanism

Problems: (b) Operational

• Cost:

- Acquisition of imagery
- Processing/post-processing software

• Data volume:

- -1 DEM = 30Mb in image format
- -1 DEM = 300Mb in (x,y,z) ASCII format

 Development of surface/morphological analysis techniques appears slower than the development of the remote sensing technologies themselves

Conclusions

- Remote sensing clearly has much to offer river science
- Photogrammetry/ALS are providing a new view of large gravel-bed braided rivers:
 - Static picture (riverbed morphology)
 - Dynamic picture (patterns of change)
- Quality of morphological information obtained wholly dependent on data quality
- Hence, analysis and improvement of DEM quality must be a priority