Remote survey of gravel riverbeds: A new view of large braided rivers

Richard Westaway

No-one really knows what a large braided river looks like

How to make a braided river

Ingredients:

- Large sediment supply
- Low bank strength
- High stream power (=>discharge)
- Space

Southerbury Plains

PACIFIC OCEAN

0 50 100 km

• Large sediment supply

• Easily erodable banks

High(ly variable) discharge

Aims

- To attempt to use digital photogrammetry and image analysis techniques to survey wide, braided, gravel riverbeds
- To use the morphological information obtained about to investigate the form and processes of large braided rivers

Waimakariri River

PACIFIC OCEAN

- Christchurch

Canterbury Plains

southernAlps

• Braided

• Some vertical relief...

• Frequent flood events

Managed

Stopbanks

...and groynes

River monitoring

• River management issues: Sediment storage/movement – Impact of control works Likely zones of bank erosion and flooding - Gravel extraction volumes • River science issues: - 3D riverbed morphology – Drainage patterns Volumes of change during flood Bedload transport rate

Conventional survey methods

• Ground survey

 Aerial photography (or satellite imagery)

Waimakariri monitoring programme

- Waimakariri surveyed by local regional council
- Cross-sections are 'levelled'
- Spaced every 500 m
- Re-surveyed every 5 years
- Supplemented by aerial photography

Waimakariri monitoring programme

Waimakariri monitoring programme

Problems with conventional methods

 Cross-sectional levelling: Laborious and slow – Gross estimates of riverbed long-profile - Unreliable estimates morphological change • Aerial photographs: Shows where water is but not why it's there Stage-dependent

Remote survey

Digital photogrammetry
Airborne laser scanning
...and others

Photogrammetry - the basics (The calculation of 3D topography from overlapping photographs of a landform) Every point on a photograph can be described by its (x,y) position Every point on-the-ground can be described by its (X,Y,Z) position The position of a camera can be described by its position (X_C, Y_C, Z_C) , rotation $(\Omega_{\rm C},\kappa_{\rm C},\Phi_{\rm C})$ and focal length (f_C). Here grouped together as C

...and the maths

With 1 photograph, for each point: (X₁,Y₁,Z₁) = f(X₁,Y₁)A₁)
With 2 photographs, for each point: (X₁,Y₁,Z₁) = f(X₁,Y₁)A₁) (X₁,Y₁,Z₁) = f(X₁,Y₁)A₁)

So, for each point that can matched on the overlapping photographs, an (X,Y,Z) position can be calculated

Photogrammetry - development

- 10 years ago points had to be matched manually, at around 500 points per hour
 Analytical photogrammetry
- Now can be done automatically, at between 100,000 and 1,000,000 points per hour - Digital photogrammetry
- But can it be used to survey large gravel riverbeds?
 - Low relief
 - Water

Waimakariri study area

Aerial photographs taken:

- February 1999
- March 1999
- February 2000
- (Plus an airborne laser scanner survey in May 2000)

Aerial photographs - Feb 1999

©Air Logistics (NZ) Ltd, 1999

Method

Photogrammetry

Image analysis

Interpolation across wetted channels

Subtracted from

Merged to give...

Final riverbed surface: a new view of a large braided river

Surface quality

DEM area	Number of points compared	Mean error (cm)	St.dev. of error (cm)
Dry points	3700	+8.4	±26
Wet points	11202	+26	±32

Broad-scale topography

Where next?

• Aim 1:

- Repeat method for March 1999 and February 2000
- Analysis of surface quality
- Automated versus manual post-processing

Where next?

- Aim 2:
 - At-epoch issues:
 - 2D and 3D topography
 - Drainage patterns
 - Location of active channels
 - Importance of upstream water routing
 - Scaling analysis
 - Between-epoch issues:
 - Quantification of planform changes
 - Spatial patterns of morphological change
 - Estimation of `step-length'
 - Volumes of erosion and deposition
 - Morphological estimation of bedload transport rate

Conclusions

- Digital photogrammetry and image analysis can be used to survey large, gravel riverbeds
- Important management and research applications
- Braided rivers far more complex than they appear - aerial photos don't tell the whole story!