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Figure 2. Figure 2a shows the North Ashburton study area. Figure 2b
shows an uncorrected DEM scaled from elevations of 48m (black) to
55m (white). Figure 2c shows the changes in elevation made by the
correction procedure, scaled from Om (white) to -0.5m (black).
2d shows the water depths derived during the correction procedure,
following correction, scaled from Om (white) to 0.8m (black).
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Figure 1. The automated correction procedure
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Table 1. Results from basic accuracy assessment for exposed areas,
uncorrected submerged areas and corrected submerged areas.
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Figure 3. Residuals of corrected water depth derived by photogrammetry
and actual, surveyed water depth vs. surveyed water depth.
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Figure 4. A comparison of water depth distributions estimated from survey
measurements and from both uncorrected and corrected
photogrammetrically-derived DEMs
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Figure 5. Error in mean bed level vs. number of cross-sections used to
represent reach. Figure compares mean bed level error calculated from
photogrammetrically-derived DEMs before ﬁgrey line) and after (black line)
correction. Figure 5b shows the same analysis performed for the survey
measurements.
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Figure 6. A DEM of difference of the North Ashburton River for the period
May 1995 to February 1999. Figure 6a shows the raster image scaled from
m of deposition (white) to 1m of erosion (black). Figure 6b shows the
same information, with zones of erosion and deposition more clearly
defined. It is easy to visualise the morphological change that has occured:
new channels have been carved on either side of the floodplain, while the
1995 central channel has experienced deposition of sediment.




